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value contact problems
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‡ Department of Mathematics, The University of Tennessee at Chattanooga, 615 McCallie
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Abstract. The expression of the acoustic field scattered on an infinite elastic plate with an
arbitrary compact inhomogeneity in terms of the analytic continuation of its scattering diagram
is found. This formula allows the uniqueness of the solution for the scattering problem to be
proved. The connection of the formula with the Rayleigh hypothesis is discussed.

1. Introduction

This letter deals with the two-dimensional problem of acoustic scattering by an infinite
elastic plate with a finite inhomogeneity. A representation for the scattered field is found
in terms of the scattering diagram. This formula is used for the proof of the uniqueness of
the solution for the scattering problem.

We assume for the above model that there is no absorption either in the fluid or in the
plate. In the case of absorption, the uniqueness of the solution can easily be proved by
using the second Green formula. However, we do not discuss this elementary case here.

The known results for uniqueness in the problems when no absorption is present are
based on explicit representation for the solution. The closed form solution for the scattering
problem can be constructed for some specific inhomogeneities only, such as pointwise
cracks, supported ribs, etc [1, 2]. The solution is constructed as follows. First, a general
solution is found which satisfies all of the equations in the domain and on the boundary
except for the conditions describing a particular pointwise inhomogeneity. (According to
[3], those conditions are said to be contact and the scattering problems are said to be
boundary-contact value problems, (BCVP).) The general solution contains some arbitrary
constants, and the contact conditions lead to a linear algebraic system for those constants.
The solvability of these systems is equivalent to the uniqueness of the solution for BCVP.
The proof of solvability is given in [4]. It is based on the existence of the explicit
representation for the general solution. For many other models, the scattering problem is
reduced to a Fredholm type equation (see, for example, [5–7]). The complete justification
of any numerical algorithm for a Fredholm equation requires the proof of the existence.
The Fredholm alternative [8] implies existence if the uniqueness is proved. Hence the proof
of the uniqueness theorem for BCVP in an arbitrary domain is of independent interest.
The absence of an explicit representation for the general form of the scattered field does
not allow the proof of uniqueness [5] to be used. Yet, the partial result is known, namely
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the solution of the homogeneous BCVP does not contain the scattering diagram and the
surface waves [4]. The following question appears. Does a solution of BCVP exist with
no components which transfer the energy? All of these questions can be answered by
using the direct representation for the scattered field in terms of the scattering diagram
and its analytic continuation with respect to the angle of observation. This representation
is known for the problem of scattering by a compact obstacle as Sommerfeld’s formula
[9, 10].

This paper is organized as follows. In section 2 some auxiliary formulae for Green
functions are discussed. In section 3 the scattering on an elastic plate with an arbitrary
compact inhomogeneity (BCVP) is considered. The representation for the solution of BCVP
is derived by means of the Green second formula. The asymptotic expansion of this formula
allows us to find the desired Sommerfeld’s formula, i.e. the representation of the scattered
field in terms of the scattering diagram and its analytic continuation. This continuation is
known to be a meromorphic function of the angle on the complex plane [11]. In section 4
the uniqueness of the solution for a particular BCVP is proved by means of Sommerfeld’s
formula and the analytic properties of the scattering diagram. In section 5 other applications
of Sommerfeld’s formula, including the connection with the Rayleigh hypothesis, are briefly
discussed. Some derivations of this paper are based on the results from [11], similar details
are not repeated.

2. Some properties of Green functions

Two auxiliary functions are needed in section 3. Their explicit representation is well
known (see [3]). They are Green functions for harmonic vibrations of an acoustic medium
R2
+ = {−∞ < x < +∞, y > 0} in the presence of an elastic plate{y = 0} (Kirchhoff’s

model is used and the time factor eiωt is dropped throughout the paper)

G(r, r0) = − 1

4π

∫
1

γ (λ)
eiλ(x−x0)

(
e−γ (λ)|y−y0| + l0(λ)

l(λ)
e−γ (λ)(y+y0)

)
dλ (2.1)

and surface Green function for the same model

g(r, x0) = −ρω
2

2π

∫
1

l(λ)
eiλ(x−x0)−γ (λ)y dλ. (2.2)

The Green function is the solution of the Helmholtz equation in a half-planeR2
+

(12+ k2)G(r, r0) = δ(r − r0) r, r0 ∈ R2
+ (2.3)

subject to the boundary condition(
D
∂4

∂x4
−mω2

)
∂G

∂y
(x, 0)+ ρω2G(x, 0) = 0 −∞ < x <∞, y = 0. (2.4)

The surface Green function is the solution of the homogeneous equation (2.3) subject to the
boundary condition (2.4) withδ(x− x0) instead of zero on the right-hand side. Throughout
r = (x, y), r0 = (x0, y0), k is the wavenumber of the acoustic medium,D is the cylindrical
rigidity of the plate,m is its density,ω is the frequency of oscillations,ρ is the density
of the acoustic medium. The radiation conditions are taken in the form of the asymptotic
representations

G(r, r0) =
√

2π

kr
ei(kr− π

4 )9G(ϕ, r0)+ o(r−1/2) asr =
√
x2+ y2→∞ (2.5a)
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uniformly with respect to the polar angleϕ = cos−1(y/r) ∈ [0, π ],

G(r, r0) = A±G(r0)e
±iκx−√κ2−k2y + o(1) asx →±∞ (2.5b)

for any finitey.
Throughout the paper9G(ϕ, r0) is the scattering diagram,A±G(r0) are amplitudes of

the surface waves propagating in the positive/negative direction of thex-axis. The absence
of limits of integration means that the contour of integration coincides with the realλ-
axis except for small neighbourhoods of the pointsλ = ±k,±κ. It avoids these points
by following small semicircles with centres at these points. Those semicircles are located
below λ = k, κ and aboveλ = −k,−κ. The following functions are used in (2.1), (2.2)

l(λ) = (Dλ4−mω2)γ (λ)− ρω2 l0(λ) = l(λ)+ 2ρω2 γ (λ) =
√
λ2− k2. (2.6)

The functionγ (λ) is defined on the complex plane cut along the vertical linesλ = k + it
andλ = −k− it, t ∈ [0,∞), andγ (λ) > 0 for λ > k. The method of steepest descent [12]
allows the following representations for the scattering diagram to be found

9G(ϕ, r0) = 1

4π i
e−ikx0 cosϕ

(
e−iky0 sinϕ + l0(k cosϕ)

l(k cosϕ)
eiky0 sinϕ

)
(2.7a)

9g(ϕ, x0) = −ρω
2

2π
e−ikx0 cosϕ k sinϕ

l(k cosϕ)
. (2.7b)

Below other representations for Green functionsG(r, r0) and g(r, x0) are needed. They
arise from (2.1) and (2.2) by using the new variable

λ = k cosψ (2.8)

G(r, r0) = − 1

4π i

∫
C

eikr cos(ϕ−ψ)e−ikx0 cosϕ

(
e−iky0 sinψ + l0(k cosψ)

l(k cosψ)
eiky0 sinψ

)
dψ (2.9a)

g(r, x0) = ρω2

2π

∫
C

eikr cos(ϕ−ψ)e−ikx0 cosψ
k sinψ

l(k cosψ)
dψ. (2.9b)

Note that representation (2.9a) is given for y > y0. The contourC coincides with the
contour(π − i∞, π) ∪ (π, 0) ∪ (0, i∞) except for small neighbourhoods of the points

ϕ+ = arccos
(κ
k

)
= i ln

(
κ

k
+
√(κ

k

)2
− 1

)
ϕ− = arccos

(
−κ
k

)
.

It avoids these points by following small semicircles with centres at these points. Those
semicircles are located on the right-hand side ofϕ+ and on the left-hand side ofϕ−.

The elementary identity

g(r, x0) = − ∂G
∂y0

(r, x0) (2.10a)

implies

9g(ϕ, x0) = −∂9G
∂y0

(ϕ, x0, 0). (2.10b)

The scattering diagrams9G(ϕ, r0) and9g(ϕ, x0) are defined for all (real) anglesϕ ∈ [0, π ].
It is proved in [11] that the diagrams allow the analytic continuation for the complexϕ-
plane as meromorphic functions. The pointsψ = ϕ± are the only poles located in a
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neighbourhood of the contourC. The direct comparison of the representations (2.7) and
(2.9) implies the formulae

G(r, r0) = −
∫
C

eikr cos(ϕ−ψ)9G(ψ, r0) dψ (2.11a)

g(r, x0) = −
∫
C

eikr cos(ϕ−ψ)9g(ψ, x0) dψ. (2.11b)

Formulae (2.11) represent Green functions in terms of analytic continuations of their
scattering diagrams. It should be mentioned again that representation (2.11a) is proved
for y > y0 only (see the comment after (2.9)). Note that representations (2.9) and (2.11)
satisfy identity (2.10a) and representations (2.7) satisfy identity (2.10b).

Two misprints in [11] should be mentioned here. The factor 1\i in (2.7a) is missed in
the similar formula (2.7) of [11]. The minus sign in (2.10a) is missed in the similar formula
(2.12) of [11]. Both factors were taken into consideration throughout [11] and were just
missed when typing.

3. Sommerfeld’s formula for the field scattered on a submerged plate with an
arbitrary compact scatterer

Let � be a compact scatterer (a compact body with the boundary∂�, a finite set of cracks
in the plate, a finite set of supporting ribs, etc). For example, let the scatterer� be a
compact body attached to the plate and∂� ∩ {y = 0} = {|x| = a, y = 0}. The boundary
∂� is supposed to be smooth and located above the liney = 0. Thenu(r) = u(x, y) is the
solution of the boundary value problem

(12+ k2)u(r) = 0 r ∈ R2
+\� (3.1)(

D
∂4

∂x4
−mω2

)
∂u

∂y
(x, 0)+ ρω2u(x, 0) = 0 a < |x| <∞ y = 0 (3.2)

u(r) = f (r) r ∈ ∂� (3.3)

subject to radiation conditions similar to (2.5)

u(r) =
√

2π

kr
ei(kr− π

4 )9u(ϕ)+ o(r−
1
2 ) asr →∞ (3.4a)

uniformly with respect toϕ ∈ [0, π ], and

u(r) = A±u e±iκx−√κ2−k2y + o(1) asx →±∞ (3.4b)

for any finitey. Let the plate be fixed at the points{x = ±a, y = 0}, i.e.

ξu(±a) = ξ ′u(±a) = 0 (3.5)

where

ξu(x0) = 1

ρω2

∂u

∂y0
(x0, 0). (3.6)

Applying Green’s second formula to the functionsu(r) andG(r, r0) in the domain
{R2
+\�} ∩ {r < R} with sufficiently largeR, using contact conditions (3.5), radiation

conditions (3.4) and lettingR→∞ yields the representation [13, 11]

u(r) =
∫
∂�

A(r0)G(r, r0) ds0+ B(x0)g(r, x0)

∣∣∣∣a
x0=−a

. (3.7)
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HereA andB are the following differential operators

A(r0) = f (r0)
∂

∂n0
+ ∂u

∂n0
(r0) B(x0) = D

(
−ξ ′′′u (x0)+ ξ ′′u (x0)

∂

∂x0

)
(3.8)

andn0 is the unit normal vector to∂�. Representation (3.7) and the radiation conditions
for the Green functions allows one to justify the radiation conditions (3.4) and to find the
following expression for the scattering diagram

9u(ϕ) =
∫
∂�

A(r0)9G(ϕ, r0) ds0+ B(x0)9g(ϕ, x0)

∣∣∣∣a
x0=−a

. (3.9)

The scattering diagrams in both the left- and right-hand side of identity (3.9) are defined
on ϕ ∈ (0, π). According to [11], they allow analytic continuation to the complexϕ-plane
as meromorphic functions with poles at the points at whichl(k cosϕ) = 0. Hence, identity
(3.9) is valid on the complexϕ-plane except for those poles. Note that none of them are
located on the contourC.

Substituting (2.11) into (3.7) and changing the order of integration yields fory >

max{y0|y0 ∈ ∂�}

u(r) =
∫
C

eikr cos(ϕ−ψ)
(∫

∂�

A(r0)9G(ψ, r0) ds0+ B(x0)9g(ψ, x0)

∣∣∣∣a
x0=−a

)
dψ. (3.10)

Identities (3.9) and (3.10) imply

u(r) = −
∫
C

eikr cos(ϕ−ψ)9u(ψ) dψ. (3.11)

Identity (3.11) represents the desired connection between the scattered field and the analytic
continuation of the scattering diagram for this field. Note that this connection for Green
functions is given by (2.11). Identity (3.11) is known for the scattering on a compact
obstacle (if Dirichlet, Neumann or mixed boundary conditions on its surface are given) as
Sommerfeld’s formula [9, 10].

4. Uniqueness of the solution for the BCVP

Sommerfeld’s formula allows the uniqueness of the solution for the boundary-contact value
problem (3.1)–(3.6) to be proved.

If two different solutions of the problem exist, then their differenceu(r) solves the
homogeneous problem. First, it can be shown that the scattering diagram and the amplitudes
of the surface waves are not presented in such a solution. The proof is based on the
application of the second Green formula to the solutionu(r) and its complex conjugate
ū(r) in the domain{R2

+\�} ∩ {r < R} with sufficiently largeR (see [13, 4]). Using
conditions (3.2)–(3.6) and lettingR →∞ yields the identity for the total scattered energy
(see [14, 15])

Esc= π

ρω

∫ π

0
|9u(ϕ)|2 dϕ + κ

4ρ2ω3
(5Dκ4− 4Dk2κ2−mω2)(|A+u |2+ |A−u |2) = 0. (4.1)

Therefore

9u(ϕ) = 0 0< ϕ < π and A±u = 0. (4.2)

Formulae (4.2) do not mean that this solution is identically zero. Indeed, radiation conditions
in this case only imply that

u(r) = o(r−1/2) asr →∞, ϕ ∈ (0, π)
u(r) = o(1) asx →±∞. (4.3)
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According to [11], the scattering diagram9u(ϕ) is a meromorphic function on the complex
ϕ-plane. In particular, it is analytic on the contourC described in section 2. According to
(4.2),9u(ϕ) = 0 on the part of this contour, 0< ϕ < π . Hence,9u(ϕ) = 0 identically.
Sommerfeld’s formula (3.11) implies that

u(r) = 0 asy > max{y0|y0 ∈ ∂�}. (4.4)

The analyticity of a solution for the Helmholtz equation allows us to state thatu(r) = 0
everywhere in{R2

+\�}. Hence, the uniqueness of the solution for the BCVP (3.1)–(3.6) is
proved.

The compact scatterer� was supposed to be located above the liney = 0.
If this assumption is rejected, Sommerfeld’s formula (3.11) is valid only fory >

max{0,maxy0∈∂� y0}. The proof of uniqueness of the solution for the BCVP has to be
modified in this case. First, the proof of identities (4.2) does not use this assumption.
Further, let0 be an arbitrary smooth path between the points{x = −a, y = 0} and
{x = a, y = 0} located above∂� and the liney = 0. Sommerfeld’s formula (3.11) is valid
for the BCVP (3.1)–(3.6) with substitution∂� for 0. Hence,u(r) = 0 in the domain with
the boundary{|x| > a, y = 0} ∪ 0. The analyticity of the solution concludes the proof.

5. Conclusion: some other possible applications of Sommerfeld’s formula

In many papers devoted to the scattering of acoustic waves on elastic plates with
inhomogeneities the following representation for the scattered field (similar to (2.1), (2.2))
is used

u(r) =
∫
p(λ)eiλx−γ (λ)y dλ. (5.1)

The function p(λ) is unknown and should be found with the help of the boundary
conditions. In the case of pointwise inhomogeneities, the functionp(λ) is represented
explicitly in terms of some arbitrary constants, these constants are found by application
of the contact conditions. In the case of extended inhomogeneities located on the plate
{−∞ < x < ∞, y = 0}, the dual integral equations forp(λ) arise, they are solved by
application the Wiener–Hopf technique. Formula (5.1) represents the field as a sum of
propagating plane waves (for|λ| < k) and inhomogeneous waves (for|λ| > k) with an
unknown amplitudep(λ). The following question arises. Does representation (5.1) contain
all the possible solutions of the boundary-contact value problem? It can be easily checked
that this representation arises from Sommerfeld’s formula by substitutingλ = k cosψ
with the functionp(λ) = −9u(ψ)/k sinψ . Note that Sommerfeld’s formula is proved
above fory > max{y0|y0 ∈ ∂�}. Hence, formula (5.1) represents the general form of the
solution for a boundary-contact value problem is all inhomogeneities are located on the plate
{−∞ < x <∞, y = 0}. If some inhomogeneities are located above the plate, representation
(5.1), generally speaking, is not valid up to the boundary{|x| > a, y = 0} ∪ ∂�. The
conjecture on the possibility of an analytic continuation of Sommerfeld’s formula up to
the boundary of the domain is called the Rayleigh hypothesis (for a compact scatterer if
Dirichlet, Neumann or mixed boundary conditions on its surface are given, see [16, 10]).
The authors are currently working on an analysis of the Rayleigh hypothesis for BCVP.

Sommerfeld’s formula (3.11) and analytical properties of the function9u(ϕ) imply that
u(r) = 0 even if9u(ϕ) = 0 on any set of angles with a limiting point. This result might
be of interest for inverse problems.
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Kirchhoff’s model of the plate is used in this paper. The authors’ conjecture is that if
the scatterer∂� is an elastic shell and both the elastic plate and elastic shell are described
by any correct theory, identity (3.11) is still valid.

The author was partially supported by The University of Tennessee at Chattanooga Center
of Excellence in Computer Applications Scholarship.
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